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On the Quantum Theory*of the Problem of the Two Bodies.
(Preliminary Communication.) By J. R. OPPENHEIMER. (Com-
municated by Mr R. H. FOWLER.)

[Read 26 July 1926.]

The problem of the two bodies has been treated on the new
mechanics by Dirac*, Paulif, and Schrodinger {, who have inde-
pendently derived the Balmer terms. The present paper is an
attempt at a more complete solution. In particular, 'formulae are
derived for the line intensities of the hydrogen spectrum, for the
photoelectric effect and its inverse, and for the continuous absorp-
tion spectrum in the ultraviolet and in the X-ray regions. Also
the probabilities of transition, deflection and capture are computed
for the collision of an electron and an ion. Numerical values are
only obtained, however, for the simplest line intensities. It is hoped
to treat the problem in greater detail.

I. Elliptic Orbits. For the line intensities the system may be
treated as multiply periodic. We shall assume three degrees of
freedom, and characterize transitions by six quantum numbers
(nkm, n'k'm'). The fourth degree of freedom which would follow
from the existence of an electronic magnetic moment, would not
affect the intensities of the series lines as wholes. For the emis-
sion lines we may use the classical formula § for the intensity in
which frequencies and amplitudes have been replaced by their
quantum theoretic analogues]|. Thus

3 OJ_4P2

/(nkm, n'k'm1) = 2 =^-f-[v*(n, n')]|xa(nkm, n'k'm)f...(1).

The frequencies are

According to SchrodingeriF the amplitudes are given by
xa u (nkm) = 2 2 2 xa (nkm, n'k'm') u (n'k'm) (3),

n! kf m'

where the functions u (nkm) satisfy the following conditions:
1. They are bounded everywhere within the configuration

space O^r; 0 ̂  ̂  ^ 7r; 0 < (/> <2V, and tend to zero sufficiently fast
as v —*• oo .

* Dirac, Proc. Boy. Soc. A, 110, 501 (1926).
t Pauli, Zeit.f. Phys. 36, 336 (1926).
* Schrodinger, Ann. d. Phys. 79, 361 (1926).
§ Kramers, Intensities of Spectral Lines, Copenhagen, 1919.
|| Born u. Jordan Zeit.f. Phys. 34, 858 (1925).
If Schrodinger, Ann. d. Phys. 79, 734 (1926).
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2. They are twice continuously differentiable.

3. They satisfy, if fi, e and E are mass, charge and energy of
the electron

V ^ + ^ ^ + ^ ) w = 0 (4).

4. They are one-valued within the configuration space.

5. They are normal and orthogonal with respect to the con-
figuration space

jjju (nkm) u (n'k'm) p drd*d<f> = < $ £ ; p = 9 - ^ ^

= r- sin S-
(5).

From this it follows that
xa (nkm, n'k'm')

= f f" I"u (nkm) u (n'k'm') xa (r*r<b) p (r<$d)) dd> d^rdr .. .(6).
J 0 J 0 J 0

For E< 0, it is only possible to construct solutions which have
the form
u (nkm) = Ur&m, (r, S-, <j>)

= ^ c o s ^ p < m ) 5e_o»--*( ^
sin mip * i=o j \ \n — k — 1 — _?/

(7),
where h = k— \ and a = (4nrzfiei/nh2)r satisfy (1)—(5) for certain
values of the constants, namely

» = 1, 2, 3 , i
ft = 0, 1, 2 : ( n - l ) V (8).

m = 0, ± 1, ± 2 ±k J
From (1), (6) and (7), we get, on performing the integrations, the
selection rules

m-m' = 0, ±1)
k- k'=±l ] (9)>

Averaging over m and m', we get the component intensities*

/ (nk n'k>) - 2^V8e" (L _ 1V (* + k') AUnk,nk')
I (nk, nk)- 3<fhB/c ^ - - j -—^^—y.. .(10).

* The intensities of the hydrogen lines have been investigated by Paali in a
paper not yet published.
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where

A*(nk)

( y y (
(11)

and
A (nk, n'k')
_n~4~1 "' "I ' "a (nnyn*+y*n*+» ( - 2)T-+»(W +&)! (w' + £')! (fc+fc/ + 7 l +
~ T.-0 y,=o (» + n')k+><'+y>+v+s

 7 l ! 7 a ! (2ifc + 7 l ) ! (2k' + y2)! (n - & - 1 - 7

(n'-S'-l-Y
(12).

Averaging again over & and k' we get the series intensities. In
ergs per atom per second these give*, for the first and second Lyman
lines, 000667 and 0*000644; for the first and second Balmer lines,
0-00789 and 000199. The only directly observable ratio is that of
the second Lyman to first Balmer line. Thus

^ § = 122
7(3,1) lLi-

The absorption lines (n, n') from the initial state n, have total
intensitiesf

n* <?h* /I \ y
n2 27rVy3 \n* n'V K }

times the corresponding emission intensities. This gives, for
instance, the two observable ratios

,2) TO. / a b s ( 2 , 3 )_ g , Q ,

The evidence in favour of such calculations of absolute intensities
is not very extensive. Two such calculations were carried through
on the Correspondence Principle. Thus Tolman J found an approxi-
mate agreement for the outer lines of a vibration-rotation band in
the infra red; and Kramers § found a rough value for the efficiency
of an X-ray bulb.

II. Hyperbolic Orbits. It is possible to extend this method to
the treatment of hyperbolic orbits. Classically the Fourier
coefficients for the coordinates do not exist for these orbits. On

* I am indebted to Mr J. T. Edsahl for checking these calculations.
t Fowler, Phil. Mag. 50, 1079 (1925).
X Tolman and Badger, Phys. Rev. 27, 383 (1926).
g Kramers, Phil. Mag. 46, 836 (1923).
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the quantum theory the components corresponding to a transition
between two hyperbolic orbits do not exist and we are forced to
use the accelerations directly. For photoelectric transitions, how-
ever, the coordinate components may be found, and the intensities
are derived from them in accordance with (1). Here, however,

where E is the positive energy of the hyperbolic orbit. The
factors in the solution of (4) which depend on ^ and <j> are those
given in (7). The values of k and m for which these satisfy the
conditions (1)—(5), are

i i 3 B i

m = 0, ±1, +2 ±k j (15).

For all values of m and k it is possible to find an integral function
f(E, k) of r satisfying (4), and which, for a set of values of E
which become closer and closer as the configuration space is
expanded, satisfy tK'e conditions (1) to (4), and are orthogonal.
The characteristic functions so obtained are

u (Ekm) = A, C°S m ? P<T° (cos ̂ )f(Ek) (16),
sin mtp *

where f(Ek) =fEk (r) = I cv (Ek) r"+* (17).

The coeflScients are given, on the one hand, by the double circuit
integrals!

2c, (Ek) = F f {z + 7)"«V (z - 7 ) - - i dz] "'
U(y,-y) J

x B(aia2) f -.(z + yY*-L(z-yp-ldz (18),.

where
<*! = Tc + 1 — in * ; et2 = k + 1 + in* '

2 • (19)

and on the other, by the recurrence formulae

(i/2 + 2kv) c, + 87̂ 7?! hr* (^c-j + Ec,^) = 0 '
...(20).

t See, for an account of the mathematical methods, Schlesinger, Differential-
gleichungen, Vieweg, 1922, and Wbittaker and Watson, Modern Analysis, Cam-
bridge, Chap. ZIT.
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From these it follows that

{ h \ ~ 1 (21),

where Sv -is of degree - in i7, and thus that the series defining

f is absolutely convergent and real. Finally,/ is given asympto-
tically for large values of (2yr) by the expansion

)
which only fails when E is zero.

It is now possible to see in detail how this case differs from
the periodic one. In the first place it follows from (22) that we can
no longer choose the constant Sj to make

/•« /•«• [2*

u
J 0 J 0 J 0

The functions u are thus still orthogonal, but cannot be made
normal. In the second place, even if we eliminate all values of E
for which condition 1 is not satisfied, we are left with a continuous
manifold of characteristic functions. The equations (3) thus become
meaningless, and must be replaced by

u(nkm)«a=S2Sa;a(nkm, n'k'rri)u(n'k'mf)
«' k' m'

+ i' 2 2 ao (nkm, Ek'm') df(E). u (Ek'm')
JO k' m'

u(Ekm)xa = £SSico(Ekm, n'k'in)u(n'k'mf)
' k' '

+ f 2 2 #«' (Ekm, E'k'm') u (E'k'm'). df(E') ,
J 0 k' m

(23).
Here the un are to be normalized, and the uE chosen to make

xa(Ekm, nk'm) = xa'(nk'm', Ekm) (24).

Finally we may determine f(E) by the following argument.
Classically we should have, for the acceleration of the electron

in an orbit of energy E,
f°°

xa(E)= ira (E, v) exp (2irivt) dv,
J -00

and, for the energy radiated from that orbit
3 f °° 2

const. 2 a;a (Ev) exp (2-rrivt) dv.
o - l J —oo
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Quantum theoretically we have, for the components of acceleration
corresponding to a photoelectric transition
u (n) ica

= f 4TTV (nE)xa(nE) u (E) exp [2m(E/h)t]df(E)
J o

(25)
[we suppress the indices k and m throughout this argument].

By analogy the radiated energy should be

const.

so that the energy radiated per unit time from the transition
n-*-(E, E + dE) is, for given k + m, k' + m',

const. 2 \ha:a (nE) v* (nE) J f P d (E/h) : (26).

On the other hand the total radiation from inverse photoelectric
transitions from an orbit of energy E is

const, t 2 xa* (En) V* (En).

Of this
const. txa

i(En)v*(En) (27)
a #

is to be ascribed to transitions E-*-n.
Now for the fully excited atom, where all temperature factors

are ironed out, the number of atoms in any range of phases will
be proportional to the corresponding volume of phase space. Thus
if the number of atoms in an elliptic orbit with quantum numbers
nkm is one, the number with a given m and k and positive energy
between E and E + &E is

[ (/)%,dw (28).
cell J cell OJO

Here J is an action variable for the system and w the canonically
conjugate angle variable.. The rate at which this number is in-
creasing is, since J" is a constant,

^ (29).

It is easy to shew that

—
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Thus the number of electrons entering the range of hyperbolic
orbits per unit time is

A (E/h).
This gives, for the condition for detailed equilibrium

xa* (nE) v4 (nE) A (E/h) = [f'h xa (nE) v> (nE)f A (E/h) .. .(31),

whence

We may verify* this result in part by computing how many
electrons enter the range of hyperbolic orbits

E, E+AE; k,k + Ak, m,m + Am

from a free electron gas with Maxwellian distribution-in-velocity.
We get

const. AE. Am. (1 - m2/&2) ~ i k.Ak (k* + n") ~ * (33).

In the limit of large (E and k) this becomes

const. AEAmAk(l -m2/&2).
This agrees with the quantum theoretic calculation except for the
factor (1 — m2/k?) ~ *. The experiment of Stern and Gerlach suggests
that, in this paradox, the quantum theoretic answer is right.

In any case (32) gives

(a) u(n)xa= 2 xa(nn')u(n')+( xa(nE)u(E)d(E+h)
n' = l J 0

(6) u(E)xa= t xa(En')u(n')+i xa(EE')u(E')d(E'+ h)\
»'=i Jo /

(34)
to determine u (E) and thus the xa (uE). Let us call the factor in
u which remains after division by the normalized functions of S-
and </>, u; and let us write

Z = u(E,k; r)=f(E,k; r)x(Ek) (35).
From (3) and (6) we get

/""
r(En)=\ r3.r.u(E).u(n)dr = r0(En)x(Ek) ...(36).

Jo
Also,

r(nn')=] «(n)M(n')^.r.dr (37),

where, for (36) and (37)

I riui(n)dr = l.
Jo

* I am much indebted to Dr P. A. M. Dirac for suggesting this procedure.
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Then we get, from (34), (36), (24) and (37), the integral equation
forX

u (n) r - 1 r (nn') u (v!) = [ v2 (Ek)f (Ek; r) r0 (En) d (E/h)
»' =i Jo

(38),
which is of the form

f°V(En)F,(r; E, n, k, k')d(E/h) = F2(r; n, k') ...(39).
Jo

The existence of a solution (38) independent of r is made plausible
by the orthogonality of the u (E); the mathematical problem will
be treated in detail shortly.

With this notation the continuous absorption spectrum is
given by

dE ...(40),
*J\J IV IV \ IV ft/ / *_/

where
<» n-k-l I

o= 2 2 ( -
p=0 v=O \

n-k-l

and \k-k'\ = l.

Moreover, if p\(v) is the energy density of radiation, the distribution
of photoelectrons in velocity per atom per unit of time is

O r — B ^ u S oo i o o n l ( | * i | l ) v 2 / v » 2

(V) dv = **?£- 2 .2 _2 (k + k') ZJ%- vdv
dcrlv n=o 4=0 k-=o to p

(41).
Similarly the emission spectrum from hyperbolic to elliptic
orbits is, in energy per electron

\k-k'\ = l.

It follows from (22) that the integrals for the components of
the coordinates corresponding to transitions between two hyper-
bolic orbits diverge. If we compute the components of the
acceleration directly from the equations of motion we get

3
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from which
e-" /^ (EkmE'k'm') d (E/h)

= d (E'/h) fffain &wa u (Ekm) u (E'k'm') d<f>d$dv .. .(44).
Now

\f(Ek)f{WV)dv* 2 g.Ri'***"; g.- 2 c

JO K = 0 T = 0

(45),
where we must choose 22, to make

27 (22)22, » 1
For small values of E, of the order of a volt, the series converges
rapidly.

This gives, for the intensity of the continuous emission
spectrum

I(Ek,E'k')d(E'/h)

ff ^ » (ET) ^ g.Br^^ d (E'/h)
(46).

III. Kinematics. From (42) and (46)'we can get the probability
that an electron, entering an hyperbolic orbit, shall be bound to
the ion in an elliptic orbit, or shall emerge in another hyperbolic
orbit. These probabilities are equal to the corresponding intensity
of radiation divided by the energy radiated for a single transition.
The total probability of capture for an electron of energy E and
total angular momentum k, averaged over the possible values of m,
is thus

„-=«, «^io*-*

Classically an angular momentum k would correspond to an
hyperbola with asymptote a distance A from the origin

, (48).

Thus an electron of energy E must " fall within a circle of area

J = J about the ion." Its probability of capture is

Pe(E) = lim I k/c(Ek).\ I &P (49).

The quantity called, classically, the effective cross-section, is, for
such electrons

(50).
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Now, classically the electron approximates more and more
closely to a free electron as r is indefinitely increased. This is not,
however, true on the new theory. For it is easy to shew, by setting
e = 0 in (4), that the characteristics for the free electron are

8in , . . . , M-irr) (5i),

which, for large r, approach

(52).

On the other hand (22) gives, for large r, characteristics which
differ from (52) by having (yr + in' — hyr) in place of (yr).

Now it will in general be possible to expand the self adjoint
characteristics u*Jp for large r in terms of the characteristics

for electrons moving with velocity (5-*- ) in three normal directions

in space. If it should be possible to expand* it in terms of the
characteristics of only such electrons as have the same energy, this
would solve the problem of the deflection spectrum. For the initial
beam we should have such a sum of characteristics as would give
an electron moving, say, along the x axis with the initial velocity.
During the encounter the statistical distribution of the character-
istics will be changed, in accordance with (46). By analysis of the
resulting characteristics in terms of the characteristics of free
electrons with the corresponding final energy moving along the
three normal directions, we can find the relative probability of any
deflection and change in energy by the encounterf. This problem
will be considered in detail.

I should like to thank Mr K. H. Fowler, F.R.S. and Dr P. A. M.
Dirac, for many valuable suggestions.

* This is impossible if one neglects transitions.
t In this connection see a paper by Born, Zeit.f. Phys. 37, 863 (1926).


